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Abstract—In the context of indoor dense discrete
environments, the rapid replanning of paths upon
encountering novel obstacles has remained a formidable
challenge. Traditional rule-based global path planning
algorithms often struggle to achieve a balance between optimal
global path determination and swift decision-making.
Consequently, this paper introduces a reinforcement learning-
based path replanning algorithm designed for indoor discrete
environments. The algorithm employs a Q-table to store the
robot's movement strategies at various locations and utilizes
the persistent interactive capabilities of reinforcement learning
with the environment, thereby enabling rapid decision-making
while ensuring that the re-planned paths trend towards
optimality. We conducted simulation experiments within three
distinct sizes of indoor dense discrete environments to validate
our approach. The results demonstrated that, under conditions
where the re-planned path quality approaches optimality, the
decision-making speed of our proposed reinforcement
learning-based path replanning algorithm significantly
surpassed that of the A* algorithm. Furthermore, we have
proposed an auxiliary path replanning algorithm grounded in
deep reinforcement learning. This supplementary algorithm is
adept at integrating with the main reinforcement learning
algorithm, thereby effectively accommodating scenarios where
the robot's target destination changes during the navigation
process, facilitating robust path replanning in response to such
alterations.

Keywords—Robot Navigation, Reinforcement Learning, Path
Replanning, Indoor Discrete Environment

1. INTRODUCTION

With the rapid development of intelligent robot
technology, robot navigation has become a key technology
in the field of automation and intelligence. In uncertain
discrete environments, robots need efficient and reliable path
planning capabilities to perform tasks such as cleaning,
instruction and service. However, traditional path planning
methods, such as optimal priority search (BFS) and rapid
exploration random tree (RRT), are difficult to balance path
quality and replanning time in the complex and discrete
indoor environment, which fail to meet the high demands for
robot navigation in complex indoor environments.
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In recent years, Reinforcement Learning (RL) has
emerged as an effective machine learning method with
immense potential in the field of robot navigation. Compared
to traditional path planning algorithms, RL algorithms can
learn optimal policies through interaction with the
environment without relying on complex environmental
models, offering better adaptability and flexibility. Moreover,
RL algorithms can handle partially observable and
dynamically changing environments, enabling robots to
achieve effective path planning in unknown or changing
settings.

Despite the progress of RL in robot navigation, realizing
rapid and efficient path replanning in indoor uncertain
discrete environments remains a challenge. Existing methods
often have limitations in computational efficiency, path
optimization, and environmental adaptability. To overcome
these issues, this paper proposes a novel RL-driven path
replanning algorithm aimed at enhancing the navigation
performance of robots in complex indoor environments.

The algorithm in this paper consists of two parts, the
reinforcement  learning main  algorithm and the
reinforcement learning auxiliary algorithm. Relying on the
powerful dynamic learning ability of reinforcement learning,
when new obstacles appear in the environment during the
movement of the robot, the main algorithm of reinforcement
learning dynamically replans a new global path with a fast
decision speed. The reinforcement learning assistance
algorithm is mainly used for the target point change during
the movement process. It relies on the neural network to fit
various state action pairs corresponding to different starting
points. When the target point changes during the movement
process, the auxiliary main algorithm updates the Q-table in
time.

The main contributions of this paper are as follows: 1)
proposed a main algorithm of indoor discrete environment to
dynamically learn the changes of obstacles in the
environment; 2) proposed reinforcement learning auxiliary
algorithm to deal with the change of target points in the
motion process together with the reinforcement learning
main algorithm; 3) verified the feasibility of our algorithm in
the indoor discrete complex environment map of different
sizes, and compared our algorithm with typical rule-based
algorithms.



II. RELATED WORK

Indoor uncertain discrete environments pose complex
challenges for robotic navigation, particularly in the realm of
rapid path replanning. Traditional path planning algorithms,
such as Dijkstra's algorithm [1] and the A* algorithm [2],
have been widely used to address path planning problems.
However, these algorithms struggle in dynamic and
unknown environments. For instance, the A* algorithm,
while effective in known spaces, becomes computationally
slow in complex environments due to the exponential
growth of computations with the state space, making it
difficult to meet real-time requirements. Additionally, the
Rapidly-exploring Random Tree (RRT) algorithm, despite
its ability to handle path planning in high-dimensional
spaces, often fails to converge in discrete, dense
environments, and the paths it generates are typically not
smooth enough, limiting its practical applicability.

With the rise of reinforcement learning, scholars have
begun to attempt to use reinforcement learning methods to
solve various practical problems that change dynamically.
As an adaptive decision-making framework, RL has
demonstrated its prowess across various domains[3-5].

In the field of robotics, RL algorithms learn optimal
policies through interaction with the environment, without
the need for complete a priori knowledge of the environment
[6-7]. For example, Lei et al. [8] proposed a dynamic path
planning method based on the Deep Q-Network (DQN) that
can find feasible paths for robots in unknown environments,
while H.-T. L. Chiang et al. [9] combined RRT and RL-
based dynamic planners as a long-term path planner for
robots .

The global path planning algorithm for complex and
dynamic environments has always been a difficult
problem.Traditional rule-based algorithms remain the
mainstream solutions for such problems at present[10-12].
Recently, several studies have attempted to apply RL to this
path planning task. Gao et al. [13] used the reinforcement
learning algorithm to guide the sampling process of RRT,
which accelerated the exploration speed of RRT. M. R.
Jones et al. [14] adopted the method of establishing multiple
Q-value tables to replace the traditional single Q-value table
for storing the state-action space of the robot, and achieved
good path planning results in complex and dynamic
environments.

However, most existing Reinforcement Learning (RL)
methods face challenges when dealing with path replanning
tasks in complex indoor uncertain discrete environments. To
overcome these challenges, we propose a novel RL-driven
algorithm for rapid path replanning in robotic navigation
within indoor uncertain discrete environments. Specifically,
in Section III, we elaborate on the design principles of our
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algorithm, including the main path replanning algorithm and
the auxiliary path replanning algorithm. Subsequently,
Section IV presents our experimental results, comparing the
performance of our algorithm with typical rule-based path
planning algorithms in addressing path replanning issues.
Furthermore, the necessity of the auxiliary path replanning
algorithm is demonstrated. Finally, Section V concludes the

paper.

In summary, our related work focuses on the following
areas:
e Exploring the application of reinforcement
learning in robotic navigation, especially in unknown
and dynamic environments.

e Adopting more advanced reinforcement learning
algorithms to improve the efficiency and quality of
path planning in complex environments.

e Attempting to use deep reinforcement learning
algorithms to solve the global and local planning of
robots in complex environments.

III. PATH REPLANNING ALGORITHM

In indoor discrete environments, when a robot
encounters new unknown obstacles, it is often necessary to
re-plan the global path to avoid getting stuck in local optima
and obtain a new optimal path. However, current
mainstream rule-based algorithms struggle to re-plan an
optimal path in a short time. For instance, the A* algorithm,
although capable of obtaining an approximate optimal path,
requires replanning with each new obstacle, which becomes
costly as unknown obstacles increase; the RRT* algorithm,
due to the multitude and discreteness of obstacles in dense
environments, finds it difficult to converge and often yields
suboptimal paths. Our proposed reinforcement learning-
based path replanning algorithm effectively compensates for
the shortcomings of rule-based algorithms, and the following
section will introduce the modeling process of the
reinforcement learning-based path replanning algorithm.
Figure 1 illustrates the core structure of our algorithm.

A. Path Planning Main Algorithm

The path planning main algorithm consists of two key
stages: initial path planning and path replanning. During the
initial path planning stage, through continuous learning via
reinforcement learning until convergence is reached, an
approximate optimal global path is obtained, and the
relevant knowledge is stored in the Q-table. In the path
replanning stage, when the robot perceives unknown new
obstacles in the dense discrete environment, the Q-table is
updated dynamically and promptly. This update mechanism
allows the robot to make decisions tending optimality
relatively quickly in complex and changing environments,
ensuring the efficiency and adaptability of the entire path
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Fig 1 The core structure of our algorithm
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planning process, thereby successfully completing various
tasks.

States: S={si, s2, ...,sk} is a finite set representing the
state space. For a static map of size nxn, we set the bottom-
left corner as the coordinate origin. Under this regulation, the
direction to the right from the coordinate origin is the
positive direction of the x-axis, and the direction upward
from the coordinate origin is the positive direction of the y-
axis. Each grid in this static map represents a specific state.
Specifically, the state m of the grid in the i-th row and j-th
column of the map is defined as in Equation (1). Therefore,
the state of the grid at the origin position of the static grid
map is defined as 0, and there are N? states in the state space.
As shown in the figure 2, it is a state space distribution
diagram of a 4x4 grid map.

=(-1) + -1 (1)
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Fig 2 Schematic diagram of the state space distribution

in a 4x4 grid map

Actions: A={aj, a>***, ag} is also a finite set representing
the action space. This action space includes eight actions, as
shown in the figure 3, which is an illustration of the action
space. We assume that the robot can choose both orthogonal
and diagonal movement strategies during its movement.
Compared to schemes that can only move orthogonally,
introducing diagonal movement strategies can optimize the
quality of the planned path.

(-1,1) (0,1) (1,1

(-1,0) (1,0)
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Fig 3 Schematic diagram of the action space

For each new (sy,a;) both spatial and end-point constraints
must be satisfied simultaneously. The spatial constraint is
interpreted as the next state after making action a; from the
state s; should not exceed the range of the grid map. The end-
point constraint is interpreted as for state s;, the action a; in
the action space that makes the next state the target point
state is selected.

Rewards: By introducing a reward function, the robot is
encouraged to obtain an optimal global path both in the
initial path and during path replanning. Our reward function
R consists of three parts: end-point reward, collision reward,
and movement reward. As shown in Equation (2), it is the
definition of the reward function.
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In which, Rgom represents the end-point reward, RLision

represents the collision reward, and RY,. represents the
movement reward.

We define the end-point reward as: when the robot
successfully reaches the end point, it is given a positive
reward of 500. This setting aims to guide the robot to move
towards the end point, motivating it to complete the task of
reaching the end point. For the collision reward, it is
considered during the robot's movement. When the robot
touches an obstacle, it is given a reward of -150. Through
this mechanism, after multiple trainings, the robot can
gradually learn to avoid touching obstacles, thus moving
more efficiently in the environment. Regarding the
movement reward, we focus on the actual movement of the
robot. Specifically, when wusing diagonal movement
strategies, the distance covered is a multiple of the distance
covered by orthogonal movement strategies.

For the main reinforcement learning algorithm, the
update formula uses the same method as Q-learning, using
the quadruple (s,a,r,s’) to update the action value Q(s,a) of
the current state-action pair. The specific update method is
shown in Equation (3). When determining the next operation
of reinforcement learning, we introduce the e-greedy strategy.
In the initial stage of training, to guide the robot to explore
more potential possibilities of the global path, € is given a
small value. As the number of training times increases to a
larger extent, to stabilize the training results and reduce
unnecessary exploration, the value of ¢ is increased. In the
initial path planning stage, the specific assignment of ¢ is as
shown in Equation (4), where steps represent the number of
reinforcement learning iterations, and the size of steps
depends on the size of the grid map. In the path replanning
stage, to make the correct decision more quickly, € is taken
as 0.9. This dynamic adjustment of € value according to the
training process can reasonably balance the robot's
exploration and utilization in different training stages,
allowing the reinforcement learning algorithm to fully mine
environmental information during training and more
efficiently utilize existing experience in the later stage.

(. )« . )+
[+max(+1,)—(,)] (3)
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B. Path Planning Auxiliary Algorithm

During the execution of path planning, in the event of a
change in the target destination, the main path planning
algorithm necessitates a relearning process, which incurs
significant time costs. To address the challenge of adapting
to changes in the target destination, a method involving
multiple Q-tables can be employed to store a richer set of
states [14]. However, when the scale of the state space
becomes excessively large, the management of this space
can become complex and cumbersome. In light of this
challenge, we introduce a path planning auxiliary algorithm
designed to assist the main algorithm in coping with changes
in the target destination. This auxiliary algorithm utilizes a
neural network to substitute for the Q-table, thereby storing
all possible combinations of starting points and target
destinations.

The architecture of our neural network model is depicted
in Figure 4. The fundamental framework utilizes a Deep Q-
Network (DQN) to approximate our model. The inputs
include a static map, starting point, target destination, and
the robot's current position. These are then integrated into a
state map, where 0 indicates unobstructed paths, -1 indicates
obstructed paths, and both the starting point and target
destination, along with the robot's current position, are
denoted by 1. Convl has a kernel size of 3x3, a stride of 1,
and padding of 1; Conv2 also has a kernel size of 3x3, a
stride of 1, and padding of 1; Fcl, a fully connected layer,
typically outputs 256 nodes; Fc2, another fully connected
layer, outputs 8 nodes corresponding to the action space of
each state. Moreover, to prevent overfitting of the network,
each neuron has a 50% chance of being randomly dropped
out.

The action space, reward strategy, and the method for
updating the action-value for the path planning auxiliary
algorithm are consistent with those of the main path planning
algorithm.
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Point : g i 256
v Relu ¢ Relu :
Current Convi Conv2 v
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Fig 4 Neural Network Model Architecture

IV. EXPERIMENTAL

A. Experimental Infrastructure

To rigorously and comprehensively validate the
feasibility of our proposed algorithm, we constructed a
dedicated simulation environment using Python. The server
employed in this setup is equipped with an Intel (R) Core

(TM) i5-14400F processor, which boasts a high clock speed
of 2.50 GHz, facilitating the efficient and rapid processing of
complex computational tasks. This provides robust
computational support for the stable operation of the
simulation environment. Additionally, the server is fitted
with an RTX 4060 graphics card.

During this simulation, to simplify the conditions for a
more precise algorithm evaluation, we established a specific
hypothetical scenario. This scenario assumes that when an
unknown obstacle appears in the adjacent grid of the robot,
the robot can successfully detect this situation and quickly
and accurately perform replanning operations. Such
simplification allows us to focus on the algorithm's
performance at critical decision points, excluding the
interference of other complex factors, and more clearly
demonstrating the strengths and weaknesses of the algorithm
in indoor uncertain discrete environment.

Considering the characteristics of complex discrete
indoor environments, we meticulously constructed grid maps
of sizes 8x8, 30x30, and 50x50. These three maps
correspond to small, medium, and large scales of complex
discrete indoor environments, respectively. Through this
method, we can thoroughly and deeply analyze the
performance of our proposed algorithm under different map
scales, thereby providing more accurate and comprehensive
data support for the optimization and practical application of
the algorithm.

B. Path Replanning Main Algorithm Experiment

As shown in the figure 5, we meticulously constructed
three indoor discrete environments of varying sizes. It is
noteworthy that the complexity of these environments
increases progressively. In this study, we focused on
comparing our proposed path replanning main algorithm
with the classic A* algorithm. In the figure, black represents
obstacles, white represents movable areas, red indicates
unknown obstacles, green lines represent the robot's
movement path after path replanning, and blue represents the
robot's initial planned path. Specifically, for the 50x50 map,
we introduced two sets of unknown obstacles, resulting in
two instances of path replanning during the robot's
movement. As shown in figure 5, green lines represent the
path taken by the robot after the first replanning, and purple
lines represent the path taken after the second replanning.

It is imperative to note that the Rapidly-exploring
Random Tree Star (RRT*) algorithm exhibits a significantly
high failure rate when tasked with planning in intricate
indoor discrete environments. The spatial domain is
fragmented by a multitude of discrete obstacles, which
hampers the algorithm's ability to efficiently explore the
space. RRT relies on stochastic sampling to probe the
environment, and within the constraints of finite time and
iterations, it struggles to identify viable pathways amidst
closely packed obstacles. Moreover, the effective navigable
space in such settings is markedly limited and
fragmented,which restricts the growth direction of the tree,
making it arduous for new nodes to expand towards the
target direction, ultimately leading to planning failure[10].
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Fig 5 The paths of two algorithms in discrete indoor environments of different sizes:(a) A*-8*8, (b) A*-30*30, (c) A*-50*50,

(d) Ours-8*8, (¢) Ours-30%30, (f) Ours-50*50

As illustrated in figure 6, we conducted a test of the
RRT* algorithm's path replanning capabilities in a complex
discrete environment on an 8x8 map. The purple dots
represent the starting points for the secondary path planning,
with the grey dashed lines depicting the exploratory process
of the RRT* algorithm during its secondary path planning,
culminating in a failed exploration. Should the complexity of
the environment escalate further, the reliability of the RRT
algorithm would be considerably diminished.

Destination Point

Re-Planning Pu'

, -

Starting Point

Fig 6 The RRT* algorithm in complex discrete environments for path
replanning

As depicted in the figure 7, we conducted 50 sets of
repeated experiments on the three types of maps we
constructed and computed the average of the experimental
results to obtain the average path lengths and average
replanning times for both the A* algorithm and our main
path planning algorithm. The results clearly demonstrate that,
under the condition that the quality of the replanned paths is
close to that of the optimal paths, the replanning time of our
main path replanning algorithm is significantly reduced

compared to the rule-based algorithm, being less than 25%
of it. It is not difficult to anticipate that as the number of
unknown discrete obstacles increases in dynamic
environments, the advantage of our main path replanning
algorithm in reducing replanning time will be even more
pronounced compared to rule-based algorithms.

C. Path Replanning Auxiliary Algorithm Experiment

During the movement of a robot, when the target point
changes, the dynamically learned state-action pairs become
inapplicable, and the path planning decisions made in a short
time will collide with obstacles. Our path replanning
auxiliary algorithm fully leverages the powerful fitting
capabilities of neural networks, using the initial static map as
a foundation. Based on the robot's starting point and current
path point, it quickly fits the action value corresponding to
each state in the static grid map. On this basis, we can obtain
the Q-table corresponding to the new target point and
dynamically learn the newly introduced obstacles in the
current grid map.

We conducted experiments on an 8x8 static grid map
constructed for this purpose. During the robot's movement,
the target point of the robot was randomly changed, and 50
sets of repeated experiments were performed. The focus was
on comparing the replanning times of the main path
replanning algorithm and the auxiliary path replanning
algorithm under the condition of target point changes. If only
the main path planning algorithm is used to handle the path
replanning issues caused by target point changes, the average
time consumption can reach 0.41 seconds; whereas, when
employing the auxiliary path planning algorithm to address
the same issue, the average time consumption is only 0.09
seconds, resulting in a significant optimization of the time
cost.
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V. CONCLUSION

In this research, we propose a novel path replanning
algorithm grounded in the principles of reinforcement
learning, which, in contrast to traditional rule-based global
path planning algorithms, markedly improves the naviga-
tional capabilities of robots within the confines of indoor
environments characterized by uncertainty and discreteness.
The algorithm is comprised of two main components: a main
path replanning component and an auxiliary algorithm. The
main algorithm is designed to dynamically learn and adapt to
the immediate environmental conditions upon encountering
unforeseen discrete obstacles, thereby enabling timely
decision-making. Empirical evidence suggests that, while
maintaining a path quality that is nearly optimal, the replan-
ning time required by our algorithm is reduced to less than a
quarter of that demanded by the standard A* algorithm. The
auxiliary algorithm is specifically tailored to address
scenarios in which the target point shifts during the robot's
traversal, harnessing the formidable fitting prowess of neural
networks to expedite the generation of a new Q-table for the
main algorithm. Collectively, the path replanning algorithm
we introduce achieves a notable reduction in both replanning
time and computational resource expenditure, all while
ensuring that the path quality remains in close proximity to
the optimal, through the expedited and dynamic learning of
the environment's dynamics.
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