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Fig. 1: Overview of our paper. The first column presents our motivation, the second column details the design of the end-
to-end visual docking strategy, and the third column showcases selected experimental results, including both virtual and
real-world scenarios.

Abstract— Automatic docking has long been a significant
challenge in the field of mobile robotics. Compared to other
automatic docking methods, visual docking methods offer
higher precision and lower deployment costs, making them
an efficient and promising choice for this task. However,
visual docking methods impose strict requirements on the
robot’s initial position at the start of the docking process.
To overcome the limitations of current vision-based methods,
we propose an innovative end-to-end visual docking method
named DVDP(direct visual docking policy). This approach
requires only a binocular RGB-D camera installed on the
mobile robot to directly output the robot’s docking path,
achieving end-to-end automatic docking. Furthermore, we have
collected a large-scale dataset of mobile robot visual automatic
docking dataset through a combination of virtual and real
environments using the Unity 3D platform and actual mobile
robot setups. We developed a series of evaluation metrics to
quantify the performance of the end-to-end visual docking
method. Extensive experiments, including benchmarks against
leading perception backbones adapted into our framework,
demonstrate that our method achieves superior performance.
Finally, real-world deployment on the SCOUT Mini confirmed
DVDP’s efficacy, with our model generating smooth, feasible
docking trajectories that meet physical constraints and reach
the target pose.
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I. INTRODUCTION

Autonomous docking is essential for long-term reliable
operation of mobile robots, enabling automatic charging
and data synchronization without human intervention. It
underpins persistent autonomy across domains such as lo-
gistics, agriculture, and domestic services, where continuous
deployment is required. As mobile robots proliferate, robust
docking has become a cornerstone technology for scalable
and practical applications.

Existing automated docking policies include those based
on infrared sensors [1], ultrasonic sensors [2], and visual
sensors [3], [4]. Among these, vision-based methods have
emerged as particularly promising due to their ability to
provide rich environmental information and achieve precise
localization through image processing and computer vision
techniques [5]. They are also relatively easy to implement
and deploy, making them attractive for a wide range of
robotic platforms [6]. However, most vision-based docking
methods adopt a perception–planning–control pipeline: de-
tecting feature points on the docking station, estimating robot
pose, and subsequently generating motion commands [7].
Such pipelines are inherently sensitive to errors in each stage,
especially when the robot’s initial state deviates significantly
from the expected docking line [8], [9].

The key challenge is that mobile robots often return
to the docking station after extended tasks, during which
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localization may drift or positions deviate. This is especially
critical outdoors, such as golf courses or agricultural fields,
where uneven terrain, GPS errors, and odometry drift cause
large deviations from the docking path. In such cases, visual
features are easily distorted or occluded, leading to inac-
curate perception. These errors propagate to planning and
control, often causing docking failures. Existing approaches
therefore, lack robustness to arbitrary initial poses and out-
door uncertainties, fundamentally limiting their reliability.

To address these limitations, we propose an end-to-end
mobile robot docking policy named DVDP. As illustrated
in Fig. 1, our framework takes synchronized RGB and depth
images from an onboard camera as input and directly outputs
the docking trajectory, eliminating the need for handcrafted
feature extraction or rule-based intermediate modules. This
design enables robust docking from arbitrary initial posi-
tions, overcoming the strict constraints of traditional percep-
tion–planning–control methods. Furthermore, we construct
a hybrid indoor–outdoor docking dataset to support future
research in this domain. To the best of our knowledge, this
is the first end-to-end, model-driven approach to vision-based
visual docking for mobile robots, validated through both
large-scale datasets and real-robot deployment.
Our contributions are as follows:

• We introduce DVDP, a novel end-to-end model-driven
policy for visual docking in mobile robots. DVDP
effectively addresses the limitations of existing visual
docking algorithms that require strict initial positions at
the start of docking, enabling reliable task completion
from any initial position.

• We have constructed a large-scale dataset for DVDP
and future end-to-end visual docking strategies. This
dataset includes a wide range of indoor and outdoor
hybrid scenarios.

• Extensive comparative and ablation experiments
demonstrate that DVDP achieves the best performance
in current end-to-end visual docking tasks. Furthermore,
deployment on the SCOUT Mini platform validated
DVDP’s effectiveness, demonstrating that our policy
produces smooth, feasible trajectories within constraints
that accurately achieve the target pose.

II. RELATED WORKS

A. Vision-Based Automatic Docking Methods

Current vision-based auto-docking methods rely on recog-
nizing and detecting feature points on the base station, such
as shapes, colors, markers, or textures. By utilizing these
features, the system can estimate the robot’s pose relative
to the base station. This information is then used for path
planning, allowing the robot to navigate safely and accurately
to the base station while considering environmental obsta-
cles, thereby ensuring a reliable automatic docking function.
[8] develops a vision-guided system for UAV aerial dock-
ing using a lightweight perception approach. Their method
employs YOLOv4-tiny and an RGB-D camera to estimate
the target’s 3D position in real-time. However, this approach

suffers from reduced accuracy under large viewing angles.
[7] proposes a vector heuristic visual guidance method.
This approach leverages the scattering effects of four laser
beams in water to construct virtual ”wing light” markers. It
combines the Hough transform with the P3P algorithm to
solve the six degrees of freedom pose estimation. However,
the method’s strong reliance on water scattering limits its
applicability to underwater environments, thus reducing its
generalizability. [10] introduces a hybrid method for USV
autonomous docking, using YOLO for robust target detection
and the ArUco algorithm for precise 3D pose estimation.
However, the method’s primary limitation is its reliance on
pre-deployed markers, which restricts its use in marker-less
environments. [9] designs a vision-guided docking system
for AUVs, utilizing an L-shaped LED light array as a visual
beacon. The system uses image processing to determine
real-time position and heading for docking. However, its
accuracy significantly diminishes with large AUV roll angles,
affecting pose estimation and applicability in complex con-
ditions. Overall, most vision-based docking algorithms use
a perception-planning-control framework, relying on visual
markers on the base station. This dependence often requires
strict robot initial poses to prevent visual data distortions that
could impact performance and accuracy.

B. End-to-end Model Driven Robot Tasks
In recent years, the application of end-to-end models in

the field of intelligent robotics has made significant progress.
Broadly speaking, these models are primarily utilized in end-
to-end navigation, end-to-end grasping, and other related
areas. Below, I will review several research works in each
of these domains.

End-to-end navigation: [11] explores the use of LiDAR-
based mapping as input for training end-to-end deep re-
inforcement learning (DRL) networks. This network aims
to achieve precise local navigation and dynamic obstacle
avoidance. [12] develops a vision-based navigation method.
Through extensive training using DRL in a simulated envi-
ronment, the well-trained policy can be effectively deployed
on real-world robots. ENTL [13] integrates world modeling,
localization, and imitation learning into a unified vision-
based sequential prediction task. This approach facilitates
long-sequence representation for embodied navigation. [14]
combines language prompts with visual inputs to enhance
the performance of end-to-end navigation in robotics.

End-to-end grasping: LEGATO [15] transfers grasping
skills across robots with different morphologies. This ap-
proach uses a hand-held gripper to learn a grasping policy
in a kinematic-invariant space, separating the skill from the
demonstrator’s body. [16] addresses poor generalization of
robotic grasping policies by introducing a diffusion-based
method. This method allows cross-gripper transfer by encod-
ing the scene in a gripper-agnostic way and decoding grasp
poses tailored to the gripper’s geometry. [17] presents an end-
to-end 6-DoF bin picking method that learns a diverse grasp
distribution, using a power sphere representation trained on
real samples, ensuring robustness to noise in depth images.



Fig. 2: Architecture of DVDP network. An RGB stream (DLA+FAP) extracts pose information, while a depth stream
(PointNet++) captures geometric context. These features are fused via cross-attention and then fed into two decoders to
output the final trajectory points and orientation sequence.

Other related areas: FusedNet [18], an end-to-end network
for mobile robot relocalization in dynamic environments,
uses a monocular camera and cross-attention to integrate
global and local features, improving 3-DoF pose estimation
accuracy. DCT [19], a vision-based end-to-end architecture
for detection, tracking, and classification, enables robots to
assist human pickers in fruit harvesting tasks. Extreme Park-
our [20] utilizes visual input from a single depth camera and
employs an end-to-end reinforcement learning framework for
a low-cost quadruped robot. This system translates visual
data into motor commands for executing complex tasks,
enabling the robot to perform extreme parkour maneuvers.

III. METHODOLOGY
A. Problem Formulation

Our goal is to train an end-to-end deep neural network,
denoted as Nθ, which takes the RGB image I and the
corresponding depth image P as inputs, and predicts the
mobile robot’s future position and orientation trajectories.

Formally, our dataset D is defined as a collection of
samples, where each sample consists of an RGB image, a
depth image, and the corresponding ground truth position
and orientation sequences:

D = {(Ik, Pk,Pgt
k ,O

gt
k )}

M
k=1 (1)

where k is the sample index and M is the total number of
samples in the dataset.

• Ik ∈ RH×W×3 is an RGB image.
• Pk ∈ RH×W is a single-channel depth image.
• Pgt

k represents the ground truth future position trajec-
tory, which consists of Q 2D coordinate points:

Pgt
k = {pgt

j }
Q
j=1 = {(Xj , Yj)}Qj=1 (2)

• Ogt
k represents the corresponding future orientation tra-

jectory, which consists of Q unit direction vectors:

Ogt
k = {ogt

j }
Q
j=1 = {(cosψj , sinψj)}Qj=1

ψj ∈ [−π, π]
(3)

The network Nθ aims to learn a mapping function that
concurrently predicts the position and orientation sequences
from the sensory inputs:

(Ppred
k ,Opred

k ) = Nθ(Ik, Pk) (4)

where the predicted position sequence Ppred
k and orientation

sequence Opred
k are structurally identical to their ground truth

counterparts.

B. End-to-end visual docking network

1) Overview: As depicted in Fig. 2, the DVDP network
features a dual-encoder architecture to process RGB-D input.
For the RGB modality, a DLA backbone [21] combined with
a Feature Aggregation Pipeline(FAP) extracts appearance-
based features crucial for identifying the base station. Con-
currently, a PointNet++ encoder processes the depth image
to capture precise geometric information for localization and
environmental context for collision avoidance. These multi-
modal features are then integrated using a cross-attention
mechanism. Finally, the fused representation is fed into two
separate decoders that generate the planned trajectory points
and the corresponding robot orientations.

Encoder: Let the input RGB image be denoted as I ∈
RH×W×3, which is resized to a canonical resolution of H =
W = 512 to conform with the network’s requirements. We
adopt DLA-34 as the backbone [22], owing to its hierarchical
feature aggregation strategy that effectively fuses multi-level
representations. After processing through DLA, the feature
tensor becomes FDLA ∈ R128×128×64.

To distill a high-dimensional, context-rich embedding, we
introduce a Feature Aggregation Pipeline (FAP). At its core
lies the Pyramid Pooling Module (PPM) [23], which pools
FDLA at multiple spatial granularities (1×1, 2×2, 3×3, 6×6),
yielding a multi-scale representation that encodes both global
context and local details. This multi-scale tensor is con-
catenated and subsequently condensed via a Global Average
Pooling (GAP) operation, producing a compact descriptor
fGAP ∈ Rd, with d = 2048. Finally, an MLP is employed



to learn complex non-linear feature interactions, projecting
fGAP into the final embedding space:

z = MLP(fGAP), z ∈ R2048. (5)

Depth Stream: Let the raw depth map be P ∈ RH×W

and its vectorized form p = vec(P) ∈ RHW . Define the
homogeneous pixel grid Ũ ∈ R3×HW with columns ũi =
[ui, vi, 1]

⊤. Given camera intrinsics K, we precompute and
cache the back-projection direction matrix

D ≜ K−1Ũ ∈ R3×HW , (6)

which is re-used across iterations to avoid repeated in-
versions. We adopt a uniform sub-sampling operator S ∈
{0, 1}N×HW (e.g., stride s = 5 along each axis), that selects
N pixels indexed by Ω, yielding pΩ = Sp ∈ RN and
DΩ = DS⊤ ∈ R3×N . Let the metric depth vector be
z = pΩ/sdepth. The cached back-projection into the camera
frame is then

X = DΩ Diag(z) ∈ R3×N , (7)

whose columns are xi = zi K
−1ũi. When an extrinsic trans-

form TCB = [R | t] ∈ SE(3) (from camera to body/base)
is available, points in the body frame are XB = RX+ t1⊤.

To compensate lens distortion, we optionally apply an
undistortion map ϕ : R2→R2 to pixel coordinates prior to
caching, i.e., Ũ ← Φ̃(Ũ), where Φ̃ augments ϕ(·) with the
homogeneous row of ones. This keeps D distortion-aware
without runtime overhead.

a) Uncertainty propagation.: Assuming independent
depth noise σ2

d (per sampled pixel), the covariance of each
3D point xi follows first-order propagation:

Σxi ≈ Ji σ
2
d J

⊤
i , Ji =

∂xi

∂di
=

1

sdepth
K−1ũi, (8)

which we use to weight downstream feature aggregation
(uncertainty-aware pooling).

b) Geometric feature extraction.: From X we construct
a sparse point set P = {xi}Ni=1 ⊂ R3. To balance coverage
and efficiency, we optionally apply farthest-point sampling
ΠFPS or voxel hashing h(·), producing P̃ = ΠFPS(P) (or
h(P)). Hierarchical point features are then extracted via
PointNet++ [24]:

FD = PN++(P̃) ∈ RM×dD , (9)

where M ≤ N is the retained set size and dD is the depth
feature dimensionality.

Cross-Attention Mechanism: Fig. 3 provides a detailed
illustration of the cross-attention architecture. Let the depth-
stream features be FD ∈ RN×dD and the RGB-stream
features be FR ∈ RM×dR . We first project them into a shared
latent space of dimension d via

Q = FDWQ, K = FRWK , V = FRWV , (10)

where WQ,WK ,WV ∈ Rd·×d are trainable matrices.
Instead of the standard dot-product similarity, we employ

an MLP-based non-linear correlation function ϕ(·, ·) between

Fig. 3: Architecture of cross-attention mechanism.

queries and keys. The attention matrix is therefore defined
as

Aij =
exp(ϕ(Qi,Kj))∑M

j′=1 exp(ϕ(Qi,Kj′))
, A ∈ RN×M . (11)

The fused cross-modal representation is obtained by

FCross = AV, (12)

and the final output after residual addition and layer normal-
ization is

FFused = LN(FR + FCross) . (13)

Here, ϕ(·, ·) is implemented as a lightweight MLP that
captures higher-order interactions between queries and keys,
enabling richer geometric modulation than conventional lin-
ear dot-product attention. This design allows the depth-
derived queries to selectively attend to semantically aligned
RGB features, resulting in a fused representation FFused that
jointly encodes structural geometry and appearance context.

Decoder: We employ a dual-decoder architecture for
autoregressive path generation. Let the fused cross-modal
representation be FFused ∈ RM×d, which is used as the
shared context feature map. This feature map serves as the
key and value inputs for both trajectory and pose decoders.

Each decoder generates a sequence of length T : the
trajectory decoder predicts position vectors p̂ = {p̂t ∈
R2}Tt=1, while the orientation decoder predicts unit vectors
ô = {ôt ∈ R2}Tt=1. The generation is autoregressive: at step
t, the decoder input query is

qt =

{
estart, t = 1,

ŷt−1, t > 1,
(14)

where estart is a learnable start token and ŷt−1 is the decoder
output from the previous step.

During training, we adopt teacher forcing: instead of
feeding the predicted output, we provide the ground-truth se-
quence y1:T , augmented with positional embeddings, as the
input queries to the decoders. This enables efficient parallel
training while preserving the autoregressive formulation. To
enforce temporal causality, a causal attention mask Mcausal ∈
{0,−∞}T×T is applied in the self-attention layers, ensuring
that prediction at step t depends only on steps ≤ t.



Fig. 4: The first row shows images from virtual scenes,
while the second row features real-world images. Notably,
the second image in the second row is a nighttime shot, and
the red-boxed area in the third image appears purple due to
infrared interference.

Loss Function: The network outputs a trajectory sequence
p̂ = {p̂i ∈ R2}Ni=1 and an orientation sequence ô = {ôi ∈
R2}Ni=1. The ground-truth counterparts are denoted as pi and
oi, respectively.

To address the periodicity of the orientation angle ψi,
we do not directly regress ψi. Instead, each orientation
is represented as a unit vector oi = (cosψi, sinψi). The
decoder predicts a 2D vector that is subsequently normalized
via the L2 norm to ensure it lies on the unit circle.

The overall training objective is a weighted sum of the
position and orientation errors:

Ltotal = α · 1
N

N∑
i=1

∥pi− p̂i∥1+β ·
1

N

N∑
i=1

∥oi− ôi∥1, (15)

where α and β are trade-off coefficients between position and
orientation accuracy. After empirical tuning, we set α = 0.63
and β = 0.37, which achieves a balanced performance across
the two objectives.

IV. EXPERIMENTS

A. Dataset Preparation and Implementation Details

Fig. 4 presents typical examples from our large-scale
visual docking dataset, which combines virtual and real
environments for both indoor and outdoor scenarios. To
enhance its challenge and robustness, the dataset was signif-
icantly augmented through domain randomization, including
diverse variations in lighting conditions, object textures,
and sensor noise. Additionally, the visual docking dataset
encompasses data from docking tasks initiated from various
starting positions. This is crucial for training the DVDP
model, ensuring it can achieve reliable docking from any
initial position.

The virtual dataset is collected from indoor and outdoor
scenarios constructed using Unity 3D. We utilize ROS2 to
facilitate communication between simulation components,
enabling seamless integration of sensor data and control
commands. The dataset encompasses a variety of scene
types, including bedrooms, sitting room, dining room, study,
balcony, yard. When the robot begins its docking process,
its camera sensors output RGB images and depth images.
Subsequently, during the execution of the docking task, the
robot outputs its position and orientation relative to its initial
coordinate system at a fixed frequency. In virtual scenarios,
docking path generation relies on rule-based algorithmic

Fig. 5: Overview of our hierarchical docking architecture.
The high-level VPG planner generates a four-step policy
(Rotate → Approach → Rotate → Dock) based on a virtual
docking point at distance d. This policy is then executed by
the low-level DWA controller, which uses real-time Lidar
data for dynamic obstacle avoidance. The architecture sepa-
rates strategic planning (VPG) from reactive control (DWA)
and is validated in a ROS2-Unity co-simulation environment
via the ROS-TCP-Connector.

generation. The virtual scenario dataset comprises a total of
10,000 samples, with 8,000 used for training and 2,000 for
evaluation.

Inspired by the research conducted by [25], we developed
a rule-based autonomous docking algorithm to enhance the
efficiency of robotic data collection, as illustrated in Fig.
5. Our docking approach is composed of two hierarchical
components: a Virtual Point Guidance (VPG) policy for
high-level path generation and the Dynamic Window Ap-
proach (DWA) for low-level motion control and obstacle
avoidance. The VPG policy, which generates the desired
docking trajectory, is executed in two phases: initialization
and motion control. In the initialization phase, the system
acquires the robot’s current pose and the base station’s global
pose to define two critical waypoints: a Real Docking Point
for the final physical connection, and a Virtual Docking Point
positioned at a predefined standoff distance. Subsequently,
the motion control phase executes a decoupled, four-step
maneuver based on these waypoints: (1) an initial rotation
to face the Virtual Docking Point, (2) a linear approach to
it, (3) a final rotation to align with the required docking
orientation, and (4) a terminal linear translation to the
Real Docking Point. This strategy effectively decouples the
task into distinct approach and alignment sub-tasks. During
execution, the DWA controller continuously generates safe
velocity commands to follow the path prescribed by VPG
while reacting to real-time data from the MID360 LiDAR to
avoid potential obstacles encountered along the path.

We collected real-world data using a modified SCOUT
Mini platform with docking capabilities, equipped with an



Intel RealSense D455 camera and a MID 360 LiDAR.
The dataset includes scenes from laboratory, corridor, and
open ground floor. In real-world scenarios, obtaining precise
pose coordinates of the base station relative to the robot is
challenging. Consequently, the docking paths in these envi-
ronments are typically collected and generated by experts.
The real-world scenario dataset comprises a total of 1200
samples, with 1000 used for training and 200 for evaluation.

Our method is implemented using the PyTorch framework
and is trained with the Adam optimizer on a single NVIDIA
GeForce RTX 4090 GPU. The batch size is set to 16,
and a consistent hyperparameter configuration is employed
across all experiments. After training on the virtual dataset,
we leverage these results to train on real-world data. This
approach facilitates the transition from virtual to real sce-
narios and effectively mitigates the issue of limited real data
availability.

B. Evaluation Metric

We have defined several metrics to evaluate the inference
capability of the end-to-end visual docking model, as de-
tailed below:

L2 Distance (L2 Dis.): The L2 distance measures the
mean Euclidean distance between corresponding trajectory
point coordinates of the predicted and actual trajectories.
This metric is employed to assess the precision and accuracy
of a model’s predictions for trajectory point coordinates
during inference.

Average Orientation Error (AER): The Average Ori-
entation Error measures the average error in robot orienta-
tion at each trajectory point between predicted and actual
trajectories. This metric is designed to assess the precision
and accuracy of the model’s predictions regarding robot
orientation during inference.

Final Docking Position Error (FDPE): The Final Dock-
ing Position Error describes the discrepancy between the
predicted and actual trajectory point coordinates when a
robot completes its final docking maneuver.

Final Docking Orientation Error (FDOE): The Final
Docking Orientation Error quantifies the discrepancy be-
tween the predicted and actual orientations of the robot at
the final docking maneuver.

Success Rate (SR): The Success Rate measures the
percentage of trials considered successful. A trial is deemed
successful only if the final state meets the predefined accu-
racy thresholds (i.e., FDPE < 0.05m and FDOE < 5◦) and
the entire predicted trajectory is confirmed to be collision-
free and kinematically plausible. As a holistic metric, SR
evaluates the practical reliability of our method by integrat-
ing both the precision of the final docking pose and the safety
of the generated path.

C. Comparative Experiment

For a fair and systematic comparison, we selected state-of-
the-art (SOTA) methods from related domains like 6D pose
estimation and grasping (e.g., Centerpose [22], AnyGrasp
[26], PVN3D [27] and Hoang et al. [28]) to serve as

TABLE I: Comparative Experiment Results.

Method L2 Dis. ↓ AER ↓ FDPE ↓ FDOE ↓ SR ↑

DVDP (Ours) 0.044m 4.6◦ 0.0445m 4.5◦ 73.2%
CenterPose [22] 0.070m 6.2◦ 0.073m 5.9◦ 27.1%
AnyGrasp [26] 0.067m 7.3◦ 0.065m 6.7◦ 28.9%
PVN3D [27] 0.055m 5.3◦ 0.057m 5.6◦ 46.5%
Hoang et al. [28] 0.051m 4.9◦ 0.047m 5.0◦ 53.3%

baseline encoders, chosen for their representative and diverse
architectures. As these models were not originally designed
for docking, we did not evaluate them directly. Instead, we
re-engineered them by integrating their respective encoders
into our DVDP framework, which provides a common au-
toregressive decoder for all variants. After retraining each
hybrid model from scratch on our dataset, this methodology
allows us to isolate the performance contribution of each
perception backbone within a unified end-to-end trajectory
generation context, ensuring all methods are compared on
equal footing. This provides the first unified evaluation of
these diverse perception backbones for the task of docking.

Table I shows the results of the comparative experiment.
The poor performance of CenterPose and AnyGrasp can be
attributed to their unimodal design (RGB images or depth
maps, respectively), which struggles to extract the rich, cou-
pled features of pose and context required for docking. When
comparing against other multi-modal methods like PVN3
and Hoang et al., DVDP’s superior performance stems from a
key architectural difference in the backbone network. While
these competing methods also employ a Pyramid Pooling
Module (PPM) for contextual feature capture, their ResNet-
based backbones lack an intrinsic mechanism for inter-layer
feature aggregation. Consequently, the features fed into their
PPMs are already deficient in hierarchical information. In
contrast, DVDP addresses this limitation by first leveraging
a DLA backbone for effective hierarchical feature fusion, and
only then feeding this deeply fused representation into a PPM
for contextual enrichment. This synergistic ”hierarchical-
then-contextual” design enables DVDP to generate a signifi-
cantly more comprehensive and discriminative feature repre-
sentation—one that encapsulates both fine-grained geometric
details and a global understanding of the scene. This, in
turn, provides a richer basis for the downstream trajectory
generation module, explaining its superior performance.

Fig. 6 presents a typical visualized result of the compar-
ative experiment results. Due to a lack of accurate depth
features, CenterPose generates docking trajectories that halt
just short of reaching the front of the base station. The
docking failures observed with AnyGrasp can be attributed
to the absence of precise base station orientation information
normally provided by RGB input. Although the model is
capable of reaching the target’s proximity, it cannot achieve
the required terminal alignment, resulting in a large pose
error that prevents a successful dock. DVDP achieves state-
of-the-art performance in the docking task, with a smooth
trajectory during the docking process and high docking
accuracy.



Fig. 6: Typical visualized result of the comparative experiment results. From left to right: DVDP, Centerpose [22], AnyGrasp
[26], PVN3D [27] and Hoang et al. [28].

Fig. 7: Typical visualized result of the ablation experiment results. From left to right: DVDP, w/o CrossAtt and w/o Decoder.

D. Ablation Experiment

To investigate the impact of different components on the
DVDP architecture, an ablation study was conducted as
shown in Table II. We replace the cross-attention mechanism
with a simplified fusion module, where RGB features and
depth features are summed and then normalized. The DVDP
consistently outperforms the version without the cross-
attention mechanism (w/o CrossAtt) across all evaluation
metrics. This indicates that the cross-attention mechanism
effectively integrates RGB and depth features, offering more
accurate and enriched information about the base station and
surrounding environment for the docking trajectory gener-
ation process. Meanwhile, we replaced our autoregressive
encoder with a non-autoregressive encoder. The experimental
results indicate that DVDP exhibits some improvements in
performance metrics compared to the version using a non-
autoregressive encoder (w/o Decoder). This suggests that
the autoregressive encoder is better equipped to model state
transitions and dynamic constraints during the trajectory
generation process. Since trajectory generation is inherently
a sequential decision-making process, the autoregressive
approach naturally aligns with this temporal dependency.
Consequently, the model is able to learn trajectories that are
smoother and more consistent with physical laws.

Fig. 7 illustrates a typical example of the ablation experi-
ment results. Compared to DVDP, the feature fusion module
used in w/o CrossAtt is less effective. Its output feature
maps fail to provide sufficiently accurate information for the
subsequent trajectory generation module, resulting in larger
deviations from the actual expert trajectories. Compared to
the w/o Decoder version, DVDP demonstrates superior dock-
ing trajectory generation. The non-autoregressive approach,
due to its parallel generation of all trajectory points, lacks
explicit modeling of temporal dependencies between states.

TABLE II: Ablation Study Results.

Method L2 Dis. ↓ AER ↓ FDPE ↓ FDOE ↓ SR ↑

DVDP (Ours) 0.044m 4.6◦ 0.045m 4.5◦ 73.2%
w/o CrossAtt 0.064m 5.8◦ 0.064m 5.9◦ 35.6%
w/o Decoder 0.048m 4.8◦ 0.047m 4.7◦ 66.8%

This can lead to discontinuities or kinematically infeasible
transitions in the trajectory. In contrast, DVDP employs an
autoregressive decoder that generates each point sequentially,
grounding each prediction on the history of the trajectory.
This inherent causal structure ensures that the generated
trajectories are not only globally goal-directed but also
maintain local smoothness and kinematic feasibility.

E. Real Robot Experiment

To evaluate the effectiveness of DVDP in real-world visual
docking on a mobile robot, we deployed the DVDP network
onto a modified SCOUT Mini mobile robotic platform. This
platform is equipped with an 11th Gen Intel Core i7-1165G7
processor and operates on the Ubuntu 20.04 system. Fig.
8 illustrates the SCOUT Mini robot performing a DVDP-
based visual docking task in a laboratory setting. Utilizing
the NVIDIA D455 stereo camera mounted on the SCOUT
Mini, RGB and depth images are captured at the initiation
of the docking procedure. These images are processed by
the DVDP network and subsequently handed over to the
lower-level controller, which directs the robot’s movement.
This process successfully completes the visual docking task
with the real mobile robot. Moreover, we plan to expand
the mobile robot visual docking datasets, especially the real-
world dataset, aiming to enhance the stability when deployed
on real robots.



Fig. 8: Real-world visual docking experiment.

V. CONCLUSIONS

In this paper, we highlight that existing visual docking
methods often fail, as visual features are prone to distortion
or occlusion. In response to this limitation, we propose
DVDP, an end-to-end strategy that generates a complete
docking trajectory directly from RGB and depth images to
achieve docking. Additionally, we developed a hybrid real-
virtual indoor and outdoor mobile robot automatic docking
dataset to support research in this area. Through extensive
comparative and ablation studies, we demonstrate that DVDP
represents the state-of-the-art in end-to-end visual docking
policies for mobile robots. In the future, we aim to expand
our mobile robot automatic docking dataset to improve
stability in real-world deployments.
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